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Abstract. Classical electromagnetism in the Lorentz gauge is reviewed from the stand- 
point of the variational principle. The gauge condition is imposed as a constraint on the 
Lagrangian density of the system using a Lagrange multiplier. A similar formulation is 
followed for the ‘complete a-Lorentz gauge’ of Yang. The uncoupled field equations in this 
gauge are derived and solved under simple boundary conditions. Without conforming to 
Maxwell’s interpretation that electromagnetic radiation should propagate at speed c, we 
show that it must always do so regardless of the value of a. This is so because under 
the simple boundary conditions chosen, the electromagnetic potentials in the ‘complete a- 
Lorentz gauge’ are a gauge transformation of the first kind of the electromagnetic potentials 
in the Lorentz gauge. It is shown that electromagnetic radiation propagates at the invariant 
speed c under the most general of boundary conditions and under a more general type 
of gauge transformation. These classical results are generalised by brief reference to the 
Aharonov-Bohm effect. Finally, repercussions regarding advanced, as opposed to retarded, 
potentials and the Lorentz invariance of the formulation are considered. 

1. Introduction 

The ‘complete a-Lorentz gauge’ of Yang (1976) purported to combine the Lorentz 
gauge (a = 1) and the Coulomb gauge (a = a). In his paper, Yang derives field 
equations in the a-Lorentz gauge, and solves them by invoking Maxwell’s criterion 
that electromagnetic radiation always propagates at speed c from charge and current 
densities. To do this he introduces the non-physical ‘a-transverse current density’ which 
acts as a source of radiation outside the source regions of the real, physical charge and 
current densities. 

This paper looks at the formulation of electrodynamics in this ‘complete a-Lorentz’ 
gauge, deriving all equations from a variational principle. In $2 we show that Yang’s 
field equations are in a mixed gauge corresponding to different choices of the Lagrange 
multiplier I in the Lagrangian density of the system. The choice I = a2 uncouples the 
field equations in the a-Lorentz gauge. These equations are taken to be the correct ones 
in this gauge, and do not involve unphysical charge or current densities. In $3 these 
equations are solved. In $4 the solutions are observed to be a gauge transformation 
of the Lorentz gauge. We show that the non-Lorentz parts of the a-Lorentz potentials 
are generated by the Lorentz parts, and that the electric and magnetic fields are 
independent of a, which remains arbitrary. In $5 we prove these statements for a 
general set of initial and boundary conditions, and in §6 we consider whether or not 
Lorentz covariance limits the arbitrary nature of a. 

0305-4470/89/152939+21%02.50 @ 1989 IOP Publishing Ltd 2939 
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Given the non-physicality of the electromagnetic potentials and the fact that 
Maxwell’s equations are intrinsically Lorentz covariant this paper reintroduces the 
notion of superluminal transfer of information. Such propagation is not observable, 
and therefore should not be taken too literally, since it does not alter the nature of the 
observable electromagnetic field. The controversy over faster-than-light propagation, 
and the particles (tachyons) which carry such signals, has lasted for many years 
(Feldman 1974). Theories of tachyons (mostly scalar tachyons) are built around Lorentz 
covariance, tachyons being a class of particles with imaginary mass (Bilaniuk et a1 1962). 
Imposition of Lorentz covariance has led to some remarkable properties for tachyons : 
non-localisability (Ecker 1970), the possibility of acausal effects (Newton 1967, Fox 
et a1 1969), non-Lorentz invariance of the vacuum (Feinberg 1969), non-conservation 
of tachyon number under a Lorentz boost (Feinberg 1978). Even supersymmetric 
tachyons, it appears, have their problems (Li and Lu 1987). Elucidation of the 
theoretical properties of tachyons seems as-elusive as the particle itself, although recent 
experimental evidence may suggest that at least one of the known neutrinos might 
possibly be a fermionic tachyon (Chodos et a/ 1985). More recently still, there has 
been some discussion about the possibility of superluminal transfer of information by 
superoptic wavepackets (Band 1988). 

Although this paper deals with classical electromagnetism our ‘tachyon field’ (the 
non-Lorentz parts of the a-Lorentz potentials) has associated with it similar properties 
to those above; non-localisability ($3), the inclusion of advanced (a  < 0) as well as 
retarded potentials ($5), the non-Lorentz invariance of the a-Lorentz gauge condition 
($6) and the non-conservation of the current associated with the tachyon potentials 

There has been much discussion about how to reconcile the statistical requirements 
of quantum theory and the usual idea of causality (Stapp 1975, Cramer 1986). One 
suggestion is that superluminal connections may resolve the issue (Stapp 1977). If the 
electromagnetic field is associated with a non-observable, non-interacting tachyon field 
this may support such an interpretation of quantum mechanics. 

(§4). 

2. Electromagnetism from a variational principle 

Maxwell’s equations for arbitrary charge and current densities p ( x ,  t) , J ( x ,  t )  are 

v .  E ( x ,  t) = 47[p(x, t) 

v x B ( x ,  t )  = - J ( x ,  t )  + - - E ( x ,  t )  

(14  

(1b) 
47[ I d  

C c B t  

1 2  
c at 

v x E ( x ,  t )  = -- --B(x, t )  

v . B(x,  t )  = 0 

(V 
permeability have their vacuum values. 

(2) the wave equations given by 

V, unless otherwise stated), where the dielectric constant and the magnetic 

In order to know how the fields E and B propagate we can deduce from (1) and 

of E ( x ,  t )  = 4n V p ( x ,  t )  + - - J ( x ,  t) ( c2 l a  a t  ) ( 3 4  

4X 
C 

a; B ( x ,  t )  = --v x J ( x ,  t )  (3b) 



Generalised gauge invariance of electromagnetism 

where 

For localised p and J without boundary surfaces, (3) have solutions 

E(x ,  t )  = - Lor’ dt’ 

B(x,  t )  = 1. Lot’ dt’ JI; d3x’ G,(x, t I c I x’, t’) V’ x J(x’ ,  t’) 
C 

(V’ V,,), where 

d( t ’  + (I  x - x’ / ) / c  - t )  
I x-x ’  I Go@, t I c 1 x’, t’) = 

2941 

(4) 

is the retarded Green function of (4) and 6 is the Dirac delta function. 

ploiting the homogeneity of (2) : 
Equally well one can introduce the concept of electromagnetic potentials by ex- 

I d  
E ( x ,  t )  = -VI$+, t )  - - -A(x, t )  

B(x, t )  = V x A(x,  t) .  
c at 

Then the field equations for A and 4 are, from (l), 

which are consistent with the continuity equation 

d 
V .  J(x ,  t )  + -p (x ,  t )  = 0. 

at (9) 

Following the usual arguments (e.g. Jackson 1967, p179ff?, A and 4 are not unique and 
for a given set of potentials a further condition must be specified. This is the gauge 
condition of the form 

g[A,  41 = 0. 

The Lorentz gauge is of the form 
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where the subscript ‘0’ signifies the Lorentz gauge. In this gauge, (8) uncouple in A 
and 4 giving 

which are consistent with (9) and (1 1). Equations (8) (which are equivalent to (l)), and 
(12) may be derived from a variational principle (VP) of the form 

6 lor’ dt d3x L(x ,  t) = 0 

where L(x,t) is a Lagrangian density and the integral is subject to the boundary 
conditions that all virtual paths are of zero variation at the time end points t ,  and to, 
and on the surface S enclosing V (Mandelstam and Yourgrau 1968). 

The Lagrangian density is a function of x and t through the components and the 
first derivatives (in time and space) of the components of A and 4, which are treated 
as independent. A first-order Euler-Lagrange VP is therefore appropriate (Akhiezer 
1962). Consider the Lagrangian density 

x A,) ’+  ( J . A , / c  - p 4 , )  - - V .  A ,  + 87c ’ (  c a t  

where all quantities are functions of x and t as above. The constraint has been included 
pre-multiplied by a dimensionless Lagrange multiplier E. %(x, t ) .  The problem for the 
given constraint (the Lorentz gauge in this instance) is now completely specified by 
this Lagrangian (hence the subscript ‘o’), to within this arbitrary multiplier i.. 

Application of the VP gives 

Given the constraint (1 l), we see that E.(x, t )  does not affect the field equations for 
A ,  and 4, and therefore has no effect on the motion of the fields. We are therefore 
free to choose the value of i which best suits our problem. If I =O we have (8) (or (1)) 
directly from the VP. This gauge, {g = g,;i = 0}, is called the Landau gauge (Itzykson 
and Zuber 1985). If A = l  we have the uncoupled equations (12), direct from the VP. 
This gauge {g = g,,i = 1) is called the Feynman gauge (Itzykson and Zuber 1985). 

Suppose we now perform a gauge transformation of the second kind within the 
Lorentz gauge, on the Lagrangian density (14), i.e. 
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where A(x, t) is a continuous differentiable function of x and t. Then 

L = -  -v+ --A )’ - i ( V  x A,)* + (J  . A,/c - p+,) 
8n 

’ 
c d t  

We have now introduced extra degrees of freedom into the Lagrangian density through 
the first and second time and space derivatives of A. Using a second-order Euler- 
Lagrange VP (Akhiezer 1962) , and allowing these derivatives of A to vary independently 
of all other quantities, we find 

(18) 
1 aP - - 0 f (i. 0 f A) = V .  J + - = 0. 

4n d t  

Thus if we choose 

Of A(x, t )  = 0 (19) 

variation of A ,  and +, still gives (1 5 )  and i remains arbitrary. 
We now turn our investigation to the complete r-Lorentz gauge of Yang (1976), i.e. 

where s( is an arbitrary constant and y = 9’ - 1.  Using this gauge Yang derives the 
following field equations for A;, and +?: 

where 

is the r-transverse current density. He solves these equations using the Green functions 
of the self-adjoint scalar operators O f ,  equation (4), and 

i.e. G,(x, t I c 1 x’, t’), equation (6), and 

b ( t ’ + ( I x - x ‘ I  / rc ) - t )  
I x-x ’  I Glx,(x, t I S ~ C  I x’, t’) = 

Eespectively. 
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Suppose we now consider the Lagrangian density 

(25) 

We note that this Lagrangian is arbitrary with respect to E. = % ( x , t )  and the constant 
a, g;, being a 'family' of gauges, depending on the choice of r .  Application of the VP 
gives 

These equations are again consistent with (9) and (20). Noting the equation of the 
constraint (20), we see again that l . (x , t )  remains completely arbitrary, and does not 
affect the motion of the fields A ,  and 4?. The same cannot be said of a. 

It is also clear that (21) cannot be derived from a Lagrangian of the type (25). 
These equations are in a mixed gauge {g = g,, E* = I}  for the first and {g = g A = a 2 }  
for the second. The equivalent gauge to the Feynman gauge {g = go, i = 17, i.e. the 
one which uncouples the field equations for A and 4, is in this case {g = g,, 1. = a 2 }  
giving 

these equations being derived directly from the Lagrangian (25) with 2 = a2. These we 
take to be the field equations of the electromagnetic potentials in the a-Lorentz gauge. 

If we now perform a gauge transformation of the second kind on (25), and apply 
a second order Euler-Lagrange VP to the result, as above, we find that (26) remain 
unaltered and E, remains arbitrary if we choose 

O;,A(x,t) = O  (28) 

instead of (19). 
We prefer to work with (27) because their right-hand sides are the real, physical 

charge and current densities, as opposed to the unphysical a-transverse current density. 
We also prefer to work with equations that can be derived directly from a VP. In the 
case of the classical motion of the fields, with Yang's restricted boundary conditions 
on J and p, this distinction between field equations is immaterial. However, if we were 
to attempt to quantise the fields, or relax the boundary conditions on J and p we must 
have a Lagrangian which gives the desired field equations directly. 

3. Solution of field equations 

For this section and the next we restrict the nature of the charge and current densities 
to maintain simplicity. Suppose J and p are localised without boundary surfaces and 
that both vanish identically before and at t = to.  
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The solution of (27b) for 4.) remains that of Yang, namely 

~ J ~ ( X ,  t )  = lo*’ dt’ fv d3x’ Gzo(x, t I ac I x’, t ’ )  p(x’ ,  t’)  

(for G,, see (24)). 
O;,(x, t I (  x’, t’) such that 

In order to solve (27a) we require a dyadic Green function 

0 f 0, (x, t I I x’, t’) + yV(V . O., (x ,  t I I x’, t ’ ) )  = -4nF6  ( X  - x’)S ( t  - t’) (30) 

where F is the dyadic idemfactor. In order to solve (30) we have chosen a fourth-order 
method. Uncoupling (30) for the components of O , ( x ,  t / I  x’, t’)  we have 

Of Oi,O,(x,t 1 1  x’ , t ’ )  = -4n (F0: ,6(x-x’ )6( t - t ’ ) - -VVS(x-x‘ )6( t - t ’ ) )  ‘r‘ .(31) 
Q * C  

We now require the scalar Green function G(x , t  1 1  x’ , t ’ )  of the self-adjoint scalar 
operator 

(the space between the parallel lines in G signifies that there is no fixed velocity of 
propagation), i.e. we require 

Of  O i , G ( x , t  1 )  x ’ , t ’ )  = - 4 n h ( x - x ’ ) 6 ( t - t ’ ) .  (33) 

Given that 

Of Go@, t I c j x’, t’) = -4118 (X - x’)6 ( t  - t’) 
GZ,(x,  t I ac I x’, t’) = -4n6 (X - x’)6 ( t  - t’) 

we impose the following boundary conditions on G :  

G(x, t ) I  x’, t’) = G,(x, t 1 c I x’, t’)  

of G ( X ,  t I /  x’, t’) = G~,(X, t 1 xc I x’, t ’ ) .  

(35) 

(36) 

These boundary conditions ensure that G obeys the causality condition and is well 
behaved at large I x - x’ 1, i.e. 

G = O  for t -= t’ G + O  as (x -x ’ I+co 

respectively. In order to find an explicit expression for G we note that the solution of 
(36) in infinite space with no boundary surfaces is 

G(x, t ( 1  x’, t’) = -I C f dt” f d3x” G,(x,  t I c I x”, t”) Glxo(x”, t” 1 ac I x’, r’). (37) 

Substituting (37) into (33) we easily show that this integral expression is a solution. The 
integration over t’ E [t,,co] is straightforward. The integral over the volume element 
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d3x” is separable in prolate spheroidal coordinates 4 E [0,2x], p E [-1,1], A E [l,m]. 
The result is 

where T = t - t’ and R = I x - x’ I and we have used the integral representations 
(A1.7) and (A1.lO) of the 6 function and the minimum function respectively. It is 
straightforward to show that ( 3 8 )  satisfies the boundary conditions (35) and (36) and 
also (33)t .  Uncoupling (27a) for A;. we have 

477 - of qc A;,(& t )  = - - J ( x ,  t )  
C 

where 

j ( x ,  t )  = 02, J ( x ,  t )  - h ( V .  J ( x ,  t ) ) .  
a* 

Hence one possible solution for A:, is 

A y @ ,  t) = lof’ dt’ L, d3x’ G(x, t / I  x’, t ’ )  j (x ’ ,  t ’ ) .  
c 

(39) 

We prefer the solution in terms of J(x, t) instead of j (x,  t ) .  We notice from (33) that 

Of  O: , .FG(x , t  1 1  x’,t’) = -4n976(x-x‘)6(t-t’). (42) 

Comparing with equation (31) we then have 

’i 
a* 

0;. (x, t 1 1  x’, t’) = 97 0 f, G(x, t 1 1  x’, t ’ )  - - VVG(x, t I I x’, t’)  

= OO(x, t I c 1 x’, t’) + 6&, t I I x’, t’) 

where 

O o ( x , t  1 c 1 ~ ’ , t ’ )  = FU:, G ( x , t  / /  x ’ , t ’ )  

= FG,(x,t  1 c I x ’ , t ’ )  

from (35), and 

1: Rk 6 ( r  - R/a’c)  6 * C*T 

= [ %’2 R3 
+ (9 - 3RR) - H ( R / d c  - T )  

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

t It may also be shown that G(x, t 1 1  x’, t’) obeys the same reciprocity relation as G,(x, t 1 c I x’, t’), i.e. 

G(x, t / I  x’, r’) = G(x’, -r’ I1 x, -0. 
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where H is the Heaviside step function (see (A1.2)), and 

Hence the solution of (27a)  is, from (30) and (44), 

A,(x,  t )  = A lot’ dt’ d3x’ 0,(x, t 1 1  x’, t’)  . J(x’ ,  t’). 
C 

(49) 

We note that we can resolve the projection of 0;. on J ,  i.e. 0, * j ,  into two components, 
one parallel to h, namely R(R and the other perpendicular to R, namely R x ( j x  R). 
They are respectively 

b ( t  - R / C )  C 2 T  

R R3 
+ - [ [ H ( R / d c  - T ) ] ;  

6 ( r  - R/a’c)  2C2T 
- - [ H ( R / a ’ c  - T ) ] : .  

R R3 

For large R or large T ,  i.e. t >> t’, the second term in each component tends to zero, 
and is zero, respectively. 

The transverse modes of vibration are then associated with causal propagation at 
speed c, and the longitudinal ones with speed ac. This second term thus acts to couple 
the different speeds of propagation and an a-dependent term appears to be associated 
with the transverse modes of vibration. (This is in contrast to the free-field case, i.e. 
J = 0, p = 0, when the transverse vibrations are propagated only at speed c, and the 
longitudinal ones only at ac.) It is therefore by no means obvious that the observable 
electric and magnetic fields are independent of CY. 

We also note that the part of the Green function containing the Heaviside step 
function introduces an element of non-localisability into the tachyon potentials. In the 
Lorentz gauge, only disturbances originating at time t - R / c  contribute to the vector 
potential at time t .  In our case there is a cumulative effect where all disturbances 
between times t - R / c  < t’ < t - R / a c  contribute to this potential at time t .  The motion 
of the vector potential in space is like that of a ‘smoke ring’t. 

4. The a dependence of the E and B fields 

t The field equation for A, may be written in the form 

a2 
a t 2  

a 2 c 2 V ( V . A y ( x , t ) )  - c 2 v  x (V x A y ( & [ ) )  - - A , ( x , t )  = - 4 n c J ( x , t ) .  

This is the time-dependent equation for elastic waves in an isotropic medium. For t % t’ the longitudinal 
vibrations of velocity ac, and the transverse vibrations of velocity c ,  uncouple. Under these conditions the 
motion near x = x‘ is like that of an expanding ‘smoke ring’, the outer circumference propagating at velocity 
EC, the inner at velocity c. (Assuming a > 1.) 
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We have used the subscript ‘0’ here to denote the Lorentz gauge (see 42) since A ,  and 
$o obey the Lorentz condition (ll), and the field equations (12). It is apparent from 
this last fact that it is the Lorentz part of A;, and $;, which couples to the real external 
conserved charge and current density. We write solutions of (52a) in dyadic form thus: 

A,(x ,  t )  = A C 1”’’ dt’ s, d3x’ e,@, t I c 1 x’, t’) . J(x’ ,  t’) 

A,@, t) = 1 C Jot’ dt’ Jv d3x’ 6*(x,  t 1 )  x’, t ’ )  . J ( x ’ ,  t ’ )  

where 0, and 6% are defined in (46) and (48). The solutions of (52b) are 

40(x, t) = lof’ dt’ Jv d3x’ Go@, t 1 c 1 x’, t’) p(x’ ,  r ’ )  

&(x, t )  = Lor’ dt’ d3x’ e&, t ) I  x’, t’) p(x’ ,  t’) 

where Go is defined in (6) and 

ez(x, t 1 1  x’, t ’ )  = GZ,(x, t 1 uc I x’, t’) - Go@, t I c I x’, t ’ )  

6 ( T  - R/W) 6 ( T  - R/C) - - - 
R R 

If we now define the quantity n(x, t I /  x’, t’) as 

n(x, t 1 1  XI, t ’ )  = c JI’ $H(T  - ~/cr ’c )  

then 

6&, t I I x’, t’) = vv Q(x, t I I x’, t’) 
1 a2  

c2 a t 2  
G,(x, r ( 1  x’, t ’) = - - n(x, t \ I  x’, t’) 

and we may now write (52a) in the following form: 

A , ( x ,  t )  = A&, t )  + v - lot’ dt’ Jv d3x’ V’ Q(x, t 1 1  x’, t’) . J(x’ ,  t’) 
C 

= A , ( x , t )  + v - ioL’ dt’ d3x’ V’ J(x’, t’) Q(x, t I I x’, t’) 
C 

- V 1 lot’ dt’ da’ J ( x ’ ,  t’) . n  ̂ n(x, t ( 1  x’, t ’ )  
C 

where 8 3 n (̂x’) is the outward normal to the surface S enclosing V .  Under present 
boundary conditions this surface integral is zero. Following a similar procedure for 
(52b) we find 
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the final term again being zero under present boundary conditions. Thus from (59), 
(60) we obtain 

where 

a 
~ ( x ,  t )  = -I lnr’ dt’ JV d3x’ ~ p ( x ’ ,  t’) n(x, t ( 1  x’, t ’ ) .  

C 

It is now clear that A , ,  by and A,, 4o are related by a gauge transformation of the 
first kind under present boundary conditions, since 

from (61). Given (61) E and B are trivially independent of a under present boundary 
conditions. i.e. 

Thus the electric and magnetic fields are always propagated at speed c regardless of 
the value of a, i.e. all the macroscopic properties of the fields E and B are unaffected 
by a. This further arbitrariness in the electromagnetic potentials stems from the fact 
that the Lagrangian density of the system, (25), is arbitrary with respect to a. 

In the Aharonov-Bohm effect (Aharonov and Bohm 1959), the phase of the 
electronic wavefunction for any closed trajectory C is given by ( q / h )  IC A ,  . ds, where 
q is the charge, h is Planck’s constant, ds is the vector elemental path length and A ,  
is the usual vector potential (4/27rp)&. Here + is the total magnetic flux, p is the 
radial coordinate and e* the transverse unit vector. The singularity at p = 0, the line 
of magnetic flux, is responsible for Stokes’ theorem failing to predict a null effect. 
However, application of Stokes’ theorem to Vx round C does predict a null effect since 
x given by (62) is non-singular, irrespective of the value of a. 

Consider again the decomposition (52). Substituting these into the a-Lorentz gauge 
condition (20) we have, given ( l l ) ,  

Using (52) again in (27), we have 

47l - 2 -  0, A ,  + yV(V.A,) = --J1 
C 
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where 

- cy 
4n 

J,  = -V(V. A,) 

Clearly 

V. J+- - ’= - - -O  - a?, 7 2 -#O. a40 
2 a t  4n I1c a t  

Equations (65) may be taken to be the field equations of the a-dependent parts of A ,  
and 4?, i.e. 2, and b,,  what we might call the ‘tachyon potentials’. We note from 
(67) that these potentials are associated with a non-conserved current which depends 
on A ,  and 4, (rather than on J and p explicitly). Thus it appears that A ,  and 4, act 
as a source generating the tachyon potentials Az and 2,. We can see this more clearly 
from (41) by replacing V’(V’. J(x’,  t’)) by --(c/4n)O~[Vr(V’~ A,(x’, t’))] from (12b), and 
integrating by parts to obtain, under present boundary conditions, 

1 
A,(x ,  t )  = C lof’ dt’ d3x’ ( G,(x, t 1 c I x’, t’) J(x’ ,  t’) + ~ G , , ( x ,  t I rc 1 x’, c’) j,(x’, t’) 

Thus the external current density J generates the potential A ,  (the first term in (68)), 
then A, (acting through .fa) generates the potential A, (the second term). Note that 
the arguments of J and .?, are in agreement with this interpretation, the disturbance 
generating A, happening after that generating A,,  but being propagated faster, both 
effects being ‘felt’ simultaneously by A , .  

Suppose we now perform a gauge transformation of the second kind on (61), i.e. 

A;, (x, t )  -+ A ,  (x, t )  + VA(x, t) (69) 

Is it possible to force A., and $y into the Lorentz gauge by an appropriate choice of 
A ? It appears from (61) that A = - x  is a possibility. However, from 52 we know 
that A must obey (28), but x satisfies (63). Therefore there is no gauge transformation 
of the second kind which transforms between the Lorentz and a-Lorentz gauges. This 
generalises a conclusion reached by Yang. 

5. The initial-value boundary-surface problem 

It may appear from (59) and (60) that for non-vanishing initial values of J and p, 
and for non-vanishing surfaces, (61) no longer hold and E,  becomes r dependent. We 
now relax the restrictions of 53 and solve the initial-value boundary-surface problem. 
Our approach for A ,  is through the fourth-order Green function (38), and the bilinear 
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concomitant, of the self-adjoint scalar operator Of  Cl&, equation (32). The initial-value 
boundary-surface solution for A, in dyadic form is written down in appendix 2. 

for the scalars 
U, U is 

The bilinear concomitant of the self-adjoint scalar operator Of 

at  a )  
a s = [UV(V2U) - uV(V2u) - (V2u)Vu + (V2U)VUl + ( 1  + ;) $ ( u p -  U-vu 

such that 

or, in integral form, 

where /i 
have anticipated the fact that T(t,) = 0. Consider 

@’) is the outward normal to the boundary surface S enclosing V, and we 

where G = G(x, t 1 1  x’, t’) is the fourth-order Green function (38) and where the primes 
denote the arguments and operators as functions of x’ and t’. We note that in (70) and 
(71) S is now a dyadic, and T, U and U are vectors. From (33) and (39), equation (74) 
becomes, using the integral theorems of appendix 2 and (35) and (36), 

4 7 4  (x, t) - 4.rr - lot’ dt’ d3x’ (GJ’  - LGV’(V’ . J ’ ) )  
C z2 

- 5 lof1 dt’ 6 da’[G(/i V’)J’ - J’(R. V’G)] 
C 

(75) 

This last term follows from the fact that G = 0 at t’ = t ,  > t .  Using the boundary 
conditions ( 3 9 ,  (36) for G we can simplify the expressions for the dyadic S and the 
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vector T in (70), (71). Using the generalised Green theorem (73) we then find 

1 
C Y2  

d A’ 

A,(x,t) = - JL” dt‘ Iv d3x’ (G,J’  - LGV’(V’ 

- -& lot’ dt’ $ da’ [G(h x (V’ x A’))s  + (h  x A’)s x V’G + (A. A’),V’G] 

+ 5 ~ o “ d t ’ $ d a ’ [ V ’ ( V ’ ~ A f ) s ( P ~ V ’ G ) + G P V ’ 2 ( V ’ ~ A ’ ) s ] .  (76) 

The initial-value problem is specified by the initial values of A ,  and dA,/dt  at time 
to. These are denoted by (A’)T and (dA’/dt’), respectivelyt. The boundary-surface 
problem may be specified by different sets of boundary conditions. Two possibilities 

and (ii x A’)s correspond to fixing the normal and tangential components of 
the field A ,  at the boundary surface. Others, (8 x (V’ x A’))s  and ( V ’ . A ’ ) s ,  correspond 
to fixing gradients of the field A ,  at the boundary surface. 

The general solution of the field equation for 4y is much simpler: 

+ lo“ dt‘ $ da’ [G,,(ii. V’4’)s - (4’)s(i i. V’G,,)] 
47t  

(77) 

using a similar notation to (76) for initial and boundary conditions. 

to vary in x’ and t’, and by using (7). Taking the curl of (76) we find that 
We are now in a position to calculate B, and E;. by allowing the initial conditions 

B,(x, t) = C lo“ dt’ Jv d3x’ G,(V’ x J’ )  

+ d3x’ (Go (g) - 
T I‘=f, 

4 R C 2  

+ Lor’ dt’ $ da’ [ (d  x (V’ x B’)),G0 + (P x B’)s x V’G, + ( h -  B’),V’G,] 
47t  

(78) 

t The current density which generates the initial conditions at t = t’ is of the form 

This is the same as that which generates the initial conditions in the Lorentz gauge (Morse and Feshbach 
1953). 
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where 

(”,s = (V’ x 4 T S .  

Equation (78) is consistent with the field equation for By,  (3b). From (7a) we have 

E,(x,  t )  = - lot1 dt’ jv d3x’ Go (V’p’ + - c2 at 

+ d3x’ ( G o  (z)  - 
4nc2 T t’=t, 

+ & lot1 dt’ 6 da’ [ ( A  x (V’ x E’)),G, + (h x Ells x V’G, + (d. E’),V’G,I 

+ 1 lot1 dt’ jv d3x’ G (V’ * J’ + - 

+‘hd3x’(G($) 4naZc3 T - ( @ ‘ ) T z  a G  I t‘=t, 

+ 

a2c2 

lot1 dt’ $ da’ [(h x @’), x V’G + (h.@’)sV’G] 
4xc 

where 

(79) 

The first three terms on the right-hand side of (79) are consistent with the field 
equation for E, ( 3 4 .  Since U)’ = 0 because of the gauge condition, and the continuity 
equation holds, we retain an a-independent solution for E,,. We note that the last three 
terms on the right-hand side of (79) are consistent with 

Thus it appears that for any given set of initial or boundary conditions the classical 
electric and magnetic fields remain independent of a, which therefore remains an 
arbitrary parameter. We now note that the relationships which existed between A , ,  c#+ 
and A,, cj,, (61), no longer hold. These quantities are now related thus: 
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and ~ ( x , t )  is that of (61), defined in (62). Since zs # j iT  the usual form of the gauge 
transformation is lost. For an initial-value boundary-surface problem however, (81) is 
exactly the transformation required for the open part of the complete solutions of the 
potentials (i.e. the integral over t' E [ to ,  t , ]  and the volume V enclosed by the surface S) 
to maintain a-independent magnetic and electric fields, the zT taking into account the 
initial disturbance of the potential fields and the Xs the effect of the boundary surface. 

6. a-Lorentz gauge invariance and special relativity 

In this section we briefly examine the constraints that special relativity may put on a, 
i.e. we examine the equations of motion in covariant form. We shall use the complex 
Minkowski space, with the spacetime 4-vector x,, = (x, ict). 

The Lorentz invariance of Maxwell's equations (l), (2), has been known from the 
time of Lorentz and Poincare. The covariance of these equations may be deduced from 
the experimentally verified law of the invariance of electric charge. Thus (l), (2) and 
(3) are respectively, in covariant form, 

- =4nJ,, ",,Y 

ax, 

ax, ax, ax,, 
aF,, +- + a F , , = O  

(84) 

where F,,, is the antisymmetric field tensor in Minkowski space. Equation (85) implies 
the existence of potentials A,, 

These A ,  are not unique ;the theory is invariant under the gauge transformation 

where A A(x, t )  is a well behaved scalar (see j2). One then chooses a gauge condition 
that is Lorentz invariant, with A ,  a 4-vector. Clearly the a-Lorentz gauge condition 
destroys manifest covariance. We wonder however if this makes any difference, since 
in quantum mechanical terms the gauge condition is a description of the vacuum state 
through a Gupta-Bleuler-type constraint. We will return to this point later. One point 
of interest here is to consider the physics of the condition a = -1. In this case the 
gauge condition (20) reverts to the Lorentz condition, and the field equations (27), 
to those of the Lorentz gauge (12). The Lagrangian densities (14) and (25) are now 
identical. However ia and 4, are not zero being a mixture of retarded and advanced 
waves propagating at velocity c. For t 9 t' these quantities are time antisymmetric 
combinations of retarded and advanced waves. This is in contrast to the time symmetric 
combinations of the same in the Wheeler-Feynman formalism (Wheeler and Feynman 
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1945), that Cramer( 1986) has recently used to re-interpret quantum mechanics in terms 
of ‘transactions’ between quantum states. We also note from (66), that 1, and 4u 
are zero. Thus it seems that one possible way of looking at retardedjadvanced wave 
combinations is in terms of an r-Lorentz-type photonjtachyon pair! We return to this 
point again below. 

7. Conclusion 

The Lagrangian density which describes the dynamics of the electromagnetic field 
interacting with an external conserved charge and current density, in the complete 
a-Lorentz gauge, is given by (25). This Lagrangian density is arbitrary with respect 
to two parameters, the variable lagrange multiplier ,i , i (x , t ) ,  and the constant a 
contained in the a-Lorentz gauge condition. The value of E. has no effect either on 
the electromagnetic potentials, A = A;, and 4 = 4?, or on the observable electric and 
magnetic fields, E and B respectively. Even under a gauge transformation of the 
second kind, which must not affect the dynamics of the fields, the value of 1 remains 
completely arbitrary, although we must restrict the nature of the gauge parameter 
(the A of (16)), to (28). The same degree of arbitrariness is not evidenced by a. The 
value of r profoundly alters the nature of the electromagnetic potentials A ,  and 4y 
from the more common case a = 1, i.e. the Lorentz gauge. The scalar potential 47 
propagates from the real external conserved charge and current density at velocity 
ac. It is localised in space, having a single wavefront. The nature of propagation 
of the vector potential A;, is more complicated, especially around times t c t’ when 
the longitudinal and transverse motions are coupled. This potential is not localised in 
space, there being two wavefronts, one propagating at speed c the other at speed ac. For 
t % t’ the motion is like that of an expanding ‘smoke ring’. However, even though the 
value of r alters the nature of the electromagnetic potentials in this way from that of 
the Lorentz gauge, these differences are not transmitted to the observable electric and 
magnetic fields, their propagation being fully causal and at speed c. This is because the 
a-Lorentz potentials are related to the Lorentz potentials by a gauge transformation. 
The ‘tachyon potentials’ are contained completely within the parameters of this gauge 
transformation, the x of (61), and the x, iT,  is of (81). Hence classical considerations 
alone put no restrictions on the value of a. 

In conclusion, several points are worthy of note. It is interesting that in the 
calculation of the fourth-order Green function, the integral (37) most naturally separates 
in prolate spheroidal coordinates. These coordinates are ones which suit a three-body 
colliding system; indeed (37) is not unlike a quantum mechanical transition matrix 
element (see for example McCarroll (1961)). Like our comments in $6, this also 
suggests a possible interpretation of the physics involved here in terms of an a-Lorentz 
tachyon/photon collision. Such a suggestion could only be verified by formulating a 
non-relativistic quantum field theory of the classical system studied above. Such an 
investigation would be worthwhile for several other reasons. First, as is well known, 
the electromagnetic potentials play a much more important role in the quantum 
mechanical treatment of the interaction of the electromagnetic field with matter than 
in the classical case. Also it appears from (50) that an a-dependent term is associated 
with the transverse modes of vibration albeit only for times around t z t’, these 
transverse modes of vibration being the ‘observable’ ones in the quantum mechanical 
sense of that word. If this were true we would then be forced to conclude that either a 
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superluminal a-Lorentz tachyon exists or, if the invariant velocity of light is sacrosanct, 
that a = 1. This latter case would indeed be remarkable, for we would have proved, 
from quantum mechanical considerations alone, that such an invariant velocity exists. 
How appropriate it would be if the oldest and simplest field theory of all provided a link 
between relativity and quantum mechanics. Such a possibility may not be as far-fetched 
as it seems if we remember that not only are Maxwell’s equations intrinsically Lorentz 
invariant but also intrinsically quantum mechanical. The former case above, if correct, 
is also interesting in that it might provide the answer to why no-one has ever observed 
an a-Lorentz tachyon. The coupling together of the longitudinal and transverse modes 
of vibration is a transient effect, such that after a long period of time these modes 
uncouple, the a-dependent terms then only being associated with the unobservable 
longitudinal motion. Perhaps if at one time such a particle existed it has long since 
departed to the realm of the unobservable. Given that no gauge transformation exists 
which transforms between the Lorentz and a-Lorentz gauges, this departure would be 
irrevocable. In any case these questions, and that of the importance of the non-Lorentz 
invariance of the a-Lorentz gauge condition, can only be answered by doing a second 
quantisation on the Lagrangian density of the system (25). 

Acknowledgments 

One of us (GJNB) thanks the Department of Education for Northern Ireland for 
financial support. 

Appendix 1 

This appendix contains properties of the various generalised functions mentioned 
above. 

The delta function 6 ( x  - y )  is defined thus: 

S ( x - y )  = o  X Z Y  

--,CO x + y .  

The Heaviside step function H ( x  - y )  is defined thus: 
0 x < y  

H ( x - y )  = 2 x = Y  
1 x > y .  

X < Y  

{ 
{; x > y .  

The minimum function M ( x , y )  is defined thus: 

M ( x , y ) =  + + Y )  x = y  

6 (x - y ) ,  H ( x  - y), M ( x ,  y) are related thus: 

M ( x ,  Y )  = y H ( x  - Y )  + x H ( y  - x )  
- -M(x,y)  a = H(Y - X I  

a x  

(Al.1) 

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

a 
- H ( x  - y )  = 6 ( x  - y )  ax (A1.6) 
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and have the following integral representations : 

M ( x , y )  = 1 Sa -e  dk -ik(x-y) 
2n -a k2 

(A1.7) 

(A1.8) 

(A1.9) 

(A1.lO) 

(Al.11) 

where J,,,(kx) is a Bessel function of order m. 

Appendix 2 

This appendix contains transformation formulae for converting volume integrals to 
surface integrals. They are all equivalent forms of Green’s theorem (A2.1), and may be 
derived from the divergence theorem. 

For the scalars U, U and the vectors P ,  Q : 

s, dr  [uV2u - uV2u] = 

s, dr  [uV2P - PV2u]  = 

da [u(R * Vu) - U ( & .  Vu)]  (A2.1) 

(A2.2) 

4;, 
4;, da [ u ( h . V ) P  - P(n*.Vu)]  

= $ d a [ ( V . ( P u ) ) R + ( V  x ( P u ) )  xn*-2P(Vu.n*)]  

(A2.3) 

dr  [uV(V * P )  - ( P  V)Vu] = da [u(V P ) R  + (Vu x P )  x R - P(Vu R)]  (A2.4) 

k d r [ P x V 2 Q + Q x V 2 P =  da[P  x ( R . V ) Q + Q x ( R . V ) P ]  (A2.5) 

s, dr  [P . V ( V *  Q) - Q - V ( V * P ) ]  = $ da [ ( V .  Q ) P  - ( V * P ) Q l  * R  (A2.6) 

4;, 
S 

dr [ P  . V x (V x Q) - Q .  V x (V x P)] = da [ ( R  x P).(V x Q) + (R x (V x P ) )  Q]. 

(A2.7) 

We can use these last two vector identities to solve (27a) above for any given set of 
initial and boundary conditions. Consider 

Lo’’ dt’ s, d3x’ [O,(x, t I (  x’, t’)  V(V . A,(x ,  t ) )  - A,(x,  t )  . V(V * O,(x, t I I  x’, t ’ ) ) ] .  (A2.8) 
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1 dO., + - lv d3x’ [.; . (g) - ( A ’ ) T .  --$ 
41cc2 T 

Using the properties of O;,(x, t \I x’, t ’ ) ,  (30), and (A2.6) and (A2.7) above, the complete 
solution is 

t’=t, 

A;.(x,  t )  = Jar' dr’ Iv d3x’@;.(x, t I /  x’, t’) . J ( x ’ ,  t’) 
C 

where we have used the notation of $5 for the initial and boundary conditions. 

Appendix 3 

We show in this appendix that, under the simple boundary conditions of $2, Yang’s 
expression for A ;  and ours are the same. According to Yang 

= C(V$,L - v$:,L) (%) Yang 

where 
- 

A ,  = A;. - A ,  

i.e. ( 5 2 ~ ) .  Hence 

) p ~ ,  t’) 
6 ( ~  - R / c )  6 ( T  - R/Uc) 

R 

d3x’ G%(x, t I /  x’, t’) p(x’ ,  t’) 

- (U) Yang = CV l:’ dt’ jv d3x’ ( R 

= - CV 1”’’ dt’ 

= ;Vlt 1 2  ~ o f ’ d t ’ ~ v d 3 x ’ n ( x , r  1 1  x’,r’)V’.J(x’,t’) 

where we have used the fact that p(x ’ ,  to) = 0, and the continuity equation (9) 

= :Vz 1 2  Lo’’ dt’ jv d3x’ V’Q(x, t ) )  x’, t ’ )  . J ( x ‘ ,  c’) 

for an infinite boundary surface, 

= 12 lor’ dt‘ jv d3x’ 0; (x, t I I x’, t’) . J(x’ ,  t ’ ) .  
c d t  

This proves the result. 
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